
Weakly Supervised Segmentation of Malignant Epithelium in Digital Breast 
Pathology

Background

Tumor  segmentation  in  digital  pathology  plays  a  crucial  role  in  breast  cancer 
diagnosis and prognosis [1], [2]. Precise delineation of malignant epithelial regions 
in  hematoxylin  and  eosin  (H&E)-stained  or  immunohistochemistry  (IHC)-stained 
slides enables downstream analyses, such as cellularity estimation and biomarker 
quantification for  diagnostic  pathological  examination,  therapeutic  response 
assessment,  treatment  selection,  and survival  prediction  [3]–[8].  Deep learning-
based segmentation approaches overcome the inefficiency of manual assessment, 
enabling high-throughput analysis of histopathological datasets. However, current 
approaches  predominantly  rely  on  supervised  learning,  which  requires  labor-
intensive pixel-level manual annotations that are impractical at scale [9]–[11]. Weakly 
supervised learning has emerged as a promising alternative,  leveraging coarse-
grained labels to reduce annotation burdens. Yet, existing solutions are constrained 
by the restriction to whole-slide image (WSI)-level classification  [12],  reliance on 
partial  cell-level  annotations  [13],  and  unproven  generalizability  across  diverse 
breast cancer cohorts and staining protocols [14], [15]. These challenges underscore 
the need for a weakly supervised segmentation method that is trained using only 
image-level  annotations  while achieving pixel-level  precision  in  malignant 
epithelium delineation and generalizing to heterogeneous breast cancer datasets.

Specific tasks

 Literature study to get familiar with the different topics.
 Perform  data  preprocessing,  including  extracting  patches  from  whole  slide 

images, applying color deconvolution to separate the Hematoxylin stain from 
H&E and IHC images using ImageJ, and applying data augmentation techniques 
such as flipping, rotation, and adjusting brightness and contrast to address class 
imbalance.

 Implement  prevalent  convolutional  neural  network  (CNN)  and  Transformer 
models, as described in Table 4 and Table 5 of Ref. [16], and conduct training and 
inference of these models using Python, preferably with PyTorch.

 Validate the segmentation results predicted by these models across various 
breast cancer datasets, including H&E and IHC images, by comparing them to 



the ground truth segmentation mask (e.g., on the MHCI and BCSS datasets) or 
the  ground  truth  cellularity  (e.g.,  on  the  BreastPathQ  and  Post-NAT-BRCA 
datasets).

 [Optional]  Develop  multiple  instance  learning  (MIL)  techniques  to  improve 
segmentation performance across diverse breast cancer datasets,  aiming to 
achieve  accuracy  comparable  to  that  of  supervised  semantic  segmentation 
methods.

Preliminary results

Figure: Tumor  segmentation  results  (white:  tumor;  black:  non-tumor)  on  the 
BreastPathQ test  dataset  and multiple  external  IHC datasets,  obtained using  a 
standard  U-Net  trained  on  the  BreastPathQ  training  dataset  with  image-level 
cellularity labels.

Resources

1. BreastPathQ dataset: a public dataset consisting of 69 H&E stained WSI collected 
from the resection specimens of 37 post-neoadjuvant therapy patients with 



invasive residual breast cancer. 2579 image patches with ROI of 512 × 512 pixels 
are manually annotated with estimated cellularity ranging between [0, 1].

2. Other public datasets: https://github.com/maduc7/Histopathology-Datasets

3. IHC datasets in NEOCHECKRAY. There are 109 IHC patches stained with an MHC-I 
antibody with pixel-level manual annotations.

Contact

Dr. Ir. Jennifer Dhont (jennifer.dhont@hubruxelles.be), Head of Data Science & AI 
Research Unit at Hopital Universitaire de Bruxelles (Erasme campus)
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