
Weakly Supervised Segmentation of Malignant Epithelium in Digital Breast 
Pathology

Background

Tumor  segmentation  in  digital  pathology  plays  a  crucial  role  in  breast  cancer 
diagnosis and prognosis [1], [2]. Precise delineation of malignant epithelial regions 
in  hematoxylin  and  eosin  (H&E)-stained  or  immunohistochemistry  (IHC)-stained 
slides enables downstream analyses, such as cellularity estimation and biomarker 
quantification for  diagnostic  pathological  examination,  therapeutic  response 
assessment,  treatment  selection,  and survival  prediction  [3]–[8].  Deep learning-
based segmentation approaches overcome the inefficiency of manual assessment, 
enabling high-throughput analysis of histopathological datasets. However, current 
approaches  predominantly  rely  on  supervised  learning,  which  requires  labor-
intensive pixel-level manual annotations that are impractical at scale [9]–[11]. Weakly 
supervised learning has emerged as a promising alternative,  leveraging coarse-
grained labels to reduce annotation burdens. Yet, existing solutions are constrained 
by the restriction to whole-slide image (WSI)-level classification  [12],  reliance on 
partial  cell-level  annotations  [13],  and  unproven  generalizability  across  diverse 
breast cancer cohorts and staining protocols [14], [15]. These challenges underscore 
the need for a weakly supervised segmentation method that is trained using only 
image-level  annotations  while achieving pixel-level  precision  in  malignant 
epithelium delineation and generalizing to heterogeneous breast cancer datasets.

Specific tasks

 Literature study to get familiar with the different topics.
 Perform  data  preprocessing,  including  extracting  patches  from  whole  slide 

images, applying color deconvolution to separate the Hematoxylin stain from 
H&E and IHC images using ImageJ, and applying data augmentation techniques 
such as flipping, rotation, and adjusting brightness and contrast to address class 
imbalance.

 Implement  prevalent  convolutional  neural  network  (CNN)  and  Transformer 
models, as described in Table 4 and Table 5 of Ref. [16], and conduct training and 
inference of these models using Python, preferably with PyTorch.

 Validate the segmentation results predicted by these models across various 
breast cancer datasets, including H&E and IHC images, by comparing them to 



the ground truth segmentation mask (e.g., on the MHCI and BCSS datasets) or 
the  ground  truth  cellularity  (e.g.,  on  the  BreastPathQ  and  Post-NAT-BRCA 
datasets).

 [Optional]  Develop  multiple  instance  learning  (MIL)  techniques  to  improve 
segmentation performance across diverse breast cancer datasets,  aiming to 
achieve  accuracy  comparable  to  that  of  supervised  semantic  segmentation 
methods.

Preliminary results

Figure: Tumor  segmentation  results  (white:  tumor;  black:  non-tumor)  on  the 
BreastPathQ test  dataset  and multiple  external  IHC datasets,  obtained using  a 
standard  U-Net  trained  on  the  BreastPathQ  training  dataset  with  image-level 
cellularity labels.

Resources

1. BreastPathQ dataset: a public dataset consisting of 69 H&E stained WSI collected 
from the resection specimens of 37 post-neoadjuvant therapy patients with 



invasive residual breast cancer. 2579 image patches with ROI of 512 × 512 pixels 
are manually annotated with estimated cellularity ranging between [0, 1].

2. Other public datasets: https://github.com/maduc7/Histopathology-Datasets

3. IHC datasets in NEOCHECKRAY. There are 109 IHC patches stained with an MHC-I 
antibody with pixel-level manual annotations.

Contact

Dr. Ir. Jennifer Dhont (jennifer.dhont@hubruxelles.be), Head of Data Science & AI 
Research Unit at Hopital Universitaire de Bruxelles (Erasme campus)
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