Weakly Supervised Segmentation of Malignant Epithelium in Digital Breast
Pathology

Background

Tumor segmentation in digital pathology plays a crucial role in breast cancer
diagnosis and prognosis [1], [2]. Precise delineation of malignant epithelial regions
in hematoxylin and eosin (H&E)-stained or immunohistochemistry (IHC)-stained
slides enables downstream analyses, such as cellularity estimation and biomarker
quantification for diagnostic pathological examination, therapeutic response
assessment, treatment selection, and survival prediction [3]-[8]. Deep learning-
based segmentation approaches overcome the inefficiency of manual assessment,
enabling high-throughput analysis of histopathological datasets. However, current
approaches predominantly rely on supervised learning, which requires labor-
intensive pixel-level manual annotations that are impractical at scale [9]-[11]. Weakly
supervised learning has emerged as a promising alternative, leveraging coarse-
grained labels to reduce annotation burdens. Yet, existing solutions are constrained
by the restriction to whole-slide image (WSI)-level classification [12], reliance on
partial cell-level annotations [13], and unproven generalizability across diverse
breast cancer cohorts and staining protocols [14], [15]. These challenges underscore
the need for a weakly supervised segmentation method that is trained using only
image-level annotations while achieving pixel-level precision in malignant
epithelium delineation and generalizing to heterogeneous breast cancer datasets.

Specific tasks

e Literature study to get familiar with the different topics.

e Perform data preprocessing, including extracting patches from whole slide
images, applying color deconvolution to separate the Hematoxylin stain from
H&E and IHC images using Image), and applying data augmentation techniques
such as flipping, rotation, and adjusting brightness and contrast to address class
imbalance.

e Implement prevalent convolutional neural network (CNN) and Transformer
models, as described in Table 4 and Table 5 of Ref. [16], and conduct training and
inference of these models using Python, preferably with PyTorch.

e Validate the segmentation results predicted by these models across various
breast cancer datasets, including H&E and IHC images, by comparing them to



the ground truth segmentation mask (e.g., on the MHCI and BCSS datasets) or
the ground truth cellularity (e.g., on the BreastPathQ and Post-NAT-BRCA
datasets).

e [Optional] Develop multiple instance learning (MIL) techniques to improve
segmentation performance across diverse breast cancer datasets, aiming to
achieve accuracy comparable to that of supervised semantic segmentation
methods.

Preliminary results
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Figure: Tumor segmentation results (white: tumor; black: non-tumor) on the
BreastPathQ test dataset and multiple external IHC datasets, obtained using a
standard U-Net trained on the BreastPathQ training dataset with image-level
cellularity labels.

Resources

1. BreastPathQ dataset: a public dataset consisting of 69 H&E stained WSI collected
from the resection specimens of 37 post-neoadjuvant therapy patients with



invasive residual breast cancer. 2579 image patches with ROI of 512 x 512 pixels
are manually annotated with estimated cellularity ranging between [0, 1].

2. Other public datasets: https://github.com/maduc?7/Histopathology-Datasets

3. IHC datasets in NEOCHECKRAY. There are 109 IHC patches stained with an MHC-I
antibody with pixel-level manual annotations.

Contact

Dr. Ir. Jennifer Dhont (jennifer.dhont@hubruxelles.be), Head of Data Science & Al
Research Unit at Hopital Universitaire de Bruxelles (Erasme campus)
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