
Hybrid CPU-GPU computing for sparse signal processing 

Context 

Sparse signal processing is about exploiting the sparse nature of signals to process them more 
efficiently or to measure them to some prescribed level of accuracy with fewer measurements than 
those conventional methods require [1]. The idea is that we would like to retrieve some signal 
belonging to a high dimensional space while leveraging its sparse nature so as to lower the number 
of measurements needed to reconstruct it in comparison to traditional approaches (which require 
at least as many measurements as space dimensions). Among the classes of sparse recovery 
algorithms, greedy ones are particularly important for embedded applications because of their low 
space and time complexity (in comparison to other alternatives based on convex optimization 
problems) [2]. A particular class of greedy algorithms is that tailored to multiple measurement 
vector (MMV) problems: several signals are acquired by different acquisition channels, which may 
be different but, by their nature, share the same support (i.e., the position of their non-zero entries 
are identical or, at least, similar). These problems appear in many practical applications, including 
some where algorithms are implemented on embedded platforms with limited computational 

capabilities [3-6]. 

There has been some research on the computationally optimal implementation of greedy 
algorithms such as orthogonal matching pursuit (OMP). Some of this research is mathematical 
(see, e.g., [2]) and aims to find algebraic ways of recasting the original OMP algorithm into one 
with lower complexity in time and space. Other avenues of optimization focus on how to optimally 
implement such algorithms on hardware platforms: regular processors, processors augmented 
with graphical processing units (GPUs), field programmable gate arrays (FPGAs) (e.g., [7]) and 
application-specific integrated circuits (ASICs) [8]. Surprisingly, despite their high costs, most 
research on the subject has focused on FPGA and ASIC-based architectures (see, e.g., [9, Sec. 

4.2, Table 3] for a recent review). 

Objectives and steps 

Loosely speaking, this master’s thesis studies how to best implement OMP, particularly in multiple 
measurement vector (MMV) scenarios. In particular, the master’s thesis student is expected to 
evaluate to what extent GPU-based computations are faster or slower than those on ARM or 
x86_64 processors, depending on the number of measurement vectors in the MMV problem. Steps 
are: i) to review mathematically optimized implementations of OMP, ii) to program a naïve OMP in 
Python or Matlab to get an idea of how it works, iii) to implement OMP for MMV problems using 
BLAS/LAPACK (with an MKL or OpenBLAS implementation) and/or Eigen, iv) to implement OMP 
for MMV problems using CUDA (and libraries such as cuBLAS and cuSOLVER when appropriate) 
and v) to compare results against the naïve Python/Matlab implementation and other existing 
implementations if they are available as well as to determine the extent to which GPU-based 
algorithms run faster or slower than those limited to running on CPUs only. The BEAMS-EE 
department possesses various CPU-GPU platforms that the student can use (ranging from 

embedded devices to a server rack with dual GPUs). 

Student profile 

This subject is appropriate for students willing to translate mathematical algorithms into efficient 
implementations running on modern computing architectures. It requires some skills in linear 
algebra, computer architecture and C/C++/CUDA programming. Having followed the course 
“Microprocessor architecture” and/or a course on GPU programming is a plus but is not mandatory. 
Having experience with BLAS/LAPACK is a plus as well. 
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